理学 >>> 数学 信息科学与系统科学 物理学 化学 天文学 地球科学总论 大气科学 地球物理学 地理学 地质学 水文学 海洋科学 生物学 科学技术史
搜索结果: 1-15 共查到知识要闻 理学 铜相关记录131条 . 查询时间(0.812 秒)
铜作为一种金属材料,因其出色的热导率和电导率、独特的催化性能以及较为经济的成本,在众多工业领域和科学研究中扮演着不可或缺的角色。然而,对氧化的敏感性,尤其是在潮湿环境中,严重制约了其在长期应用中的潜力。在暴露于水时,铜会快速氧化并在表面形成铜氧化物,对其结构和导电性能等产生严重影响。2024年6月18日,中国科学院上海高等研究院纳米气泡研究团队联合上海应用物理研究所、上海大学和中国科学院温州研究院...
2024年4月22日,中国科学院合肥物质院固体所计算物理与量子材料研究部在铜基过渡金属合金的形成能研究方面取得新进展。研究人员利用第一性原理和团簇展开方法系统地研究了20种铜基过渡金属合金的形成能以及Cu-Au合金的基态结构,阐释了基于广义梯度近似的密度泛函理论错误预测形成能和结构稳定性的物理机制,为研究其他过渡金属合金、相图和高通量计算提供了新思路。相关结果发表在npj Computationa...
2024年3月22日下午,应铜川市第四中学邀请,中国科学院老科学家科普团西安分团专家、陕西省动物研究所吴晓民二级研究员为该校师生作科学讲座。铜川市第四中学副校长杨红军主持讲座,校长崔会婷及六年级和七年级200余名师生听讲。中国科学院科普团西安分团常务副团长、中国科学报陕西记者站执行站长张行勇二级高级记者,中国科学院科普团西安分团专家、中国科学院西安分院综合办原高级主管吴民义,中国科学院科普团西安分...
地幔作为地球最大的地质构造单元,其物质组成记录了大量的地球演化信息,同时其动力学过程也显著影响地球浅部圈层。俗话说,上天容易,入地难。现阶段直接测量地幔的物质组成信息和动力学过程存在巨大挑战。而在洋底绵延数万公里的洋中脊玄武岩作为全球最大规模的幔源岩浆,成为了地质学家们的首选目标,为了解地球深部物质组成和深部动力学过程提供了大量的数据基础。然而喷发的岩浆作为汇聚熔体,许多继承自地幔源区和岩浆过程的...
2023年12月22日,中国科学院合肥物质院固体所内耗与固体缺陷研究部在高强高热导耐热铜合金研究方面取得新进展。相关结果发表在 Acta Materialia 上。高性能铜合金在先进核能、高速轨道交通、电子芯片、强电磁等领域具有重要的应用。铜合金用作核聚变堆高热负荷部件的热沉材料时,需要同时具备高强度、高热导率、高温稳定及抗辐照等综合性能。然而,铜合金的强度、导热性能和高温稳定性三者之间往往相互制...
2023年12月22日,中国科学技术大学姚宏斌课题组基于新型铜碘杂化团簇构筑了低成本、高效率、高亮度暖白光发光二极管(LED)器件。得益于所设计的铜碘杂化团簇具备的高构型熵、高发光效率和宽光谱发射等特性,实现了高效暖白光LED器件无掺杂、低成本、大面积的溶液法涂布制备,是非铅金属卤化物LED领域的新突破。相关研究成果以High efficiency warm-white light-emittin...
铜是植物生长发育所必需的微量元素,在植物细胞内参与光合作用、呼吸作用以及许多其他生理生化反应过程。缺铜会影响植物的正常生长发育,严重时会导致作物的产量下降和品质降低。尽管铜是植物所必需的元素,但过量的铜摄入能导致活性氧迸发引起细胞毒害。因此,植物需要维持细胞内的铜稳态。  
铜是植物生长发育所必需的微量元素,在植物细胞内参与光合作用、呼吸作用以及许多其他生理生化反应过程。缺铜会影响植物的正常生长发育,严重时会导致作物的产量下降和品质降低。尽管铜是植物所必需的元素,但过量的铜摄入能导致活性氧迸发引起细胞毒害。因此,植物需要维持细胞内的铜稳态。 
自1986年铜氧化物高温超导体发现以来,探讨高温超导机理和进一步提高超导转变温度是凝聚态物理研究的核心问题。铜氧化物高温超导体的母体是反铁磁Mott绝缘体。高温超导电性是通过向母体掺入适量的载流子得以实现。有研究表明,超导转变温度TC不仅取决于铜氧面CuO2的掺杂浓度,而且依赖于晶胞中CuO2面的层数(n),且在三层体系(n=3)中超导转变温度TC最高。此外,三层铜氧化物超导体表现出不寻常的相图,...
自1986年铜氧化物高温超导体发现以来,探讨高温超导机理和进一步提高超导转变温度是凝聚态物理研究的核心问题。铜氧化物高温超导体的母体是反铁磁Mott绝缘体。高温超导电性是通过向母体掺入适量的载流子得以实现。有研究表明,超导转变温度TC不仅取决于铜氧面CuO2的掺杂浓度,而且依赖于晶胞中CuO2面的层数(n),且在三层体系(n=3)中超导转变温度TC最高。此外,三层铜氧化物超导体表现出不寻常的相图,...
近日,农业农村部环境保护科研监测所农田有机污染生物消减创新团队揭示了重金属增强细菌耐药性的前体机制,为有效遏制环境细菌耐药性提供了新视角。相关研究成果发表在《总环境科学》(Science of The Total Environment)上。
铜催化的偶联反应是现代有机化学构建碳-碳键与碳-杂原子键的最重要和最古老反应之一。而铜催化反应的发展一度落后于在其之后发现的钯催化偶联反应。其中,重要的原因之一是铜催化反应机理复杂,阻碍了科学家对铜催化剂的理性思考和设计。一般认为,铜催化反应过程中一价铜与亲电底物氧化加成生成三价铜中间体是该催化循环的决速步。然而,由于高价态的金属络合物往往不稳定,很难被分离鉴定。因此,相关机理研究颇具挑战性且存在...
铜催化的偶联反应是现代有机化学构建碳-碳键与碳-杂原子键的最重要和最古老反应之一。然而铜催化反应的发展一度落后于在其之后发现的钯催化偶联反应,其中一个重要的原因是铜催化反应机理复杂,阻碍了科学家们对铜催化剂的理性思考和设计。一般认为,铜催化反应过程中一价铜与亲电底物氧化加成生成三价铜中间体是该催化循环的决速步。然而,由于高价态的金属络合物往往不稳定,很难被分离鉴定。因此,相关机理研究十分具有挑战性...
2023年8月30日,中国科学院大连化学物理研究所生物能源研究部催化羰基化研究组研究员吴小锋团队,在不饱和键的羰基化反应方面取得新进展,发展了一种不对称铜催化的非活化烯烃/炔烃的氢胺化羰基化反应,得到了一系列烷基酰胺类化合物。
2023年8月21日,中国科学院大连化学物理研究所生物能源研究部催化羰基化研究组(DNL0604组)吴小锋研究员团队在不饱和键的羰基化反应方面取得新进展,发展了一种不对称铜催化的非活化烯烃/炔烃的氢胺化羰基化反应,得到了一系列烷基酰胺类化合物。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...